Gorenstein projective modules and recollements over triangular matrix rings
نویسندگان
چکیده
منابع مشابه
Periodic modules over Gorenstein local rings
It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t ±1 ]-module associated to R. This module, denoted J(R), is the free Z[t ±1 ]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The ...
متن کاملOn Projective Modules over Semi-hereditary Rings
This theorem, already known for finitely generated projective modules[l, I, Proposition 6.1], has been recently proved for arbitrary projective modules over commutative semi-hereditary rings by I. Kaplansky [2], who raised the problem of extending it to the noncommutative case. We recall two results due to Kaplansky: Any projective module (over an arbitrary ring) is a direct sum of countably ge...
متن کاملStrongly Gorenstein projective , injective and flat modules
Let R be a ring and n a fixed positive integer, we investigate the properties of n-strongly Gorenstein projective, injective and flat modules. Using the homological theory , we prove that the tensor product of an n-strongly Gorenstein projective (flat) right R -module and projective (flat) left R-module is also n-strongly Gorenstein projective (flat). Let R be a coherent ring ,we prove that the...
متن کاملRelative Singularity Categories and Gorenstein-projective Modules
We introduce the notion of relative singularity category with respect to any self-orthogonal subcategory ω of an abelian category. We introduce the Frobenius category of ω-Cohen-Macaulay objects, and under some reasonable conditions, we show that the stable category of ω-Cohen-Macaulay objects is triangle-equivalent to the relative singularity category. As applications, we relate the stable cat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2020
ISSN: 0092-7872,1532-4125
DOI: 10.1080/00927872.2020.1775240